Papers
Topics
Authors
Recent
2000 character limit reached

On the long time behavior of solutions to the Intermediate Long Wave equation (1910.03897v1)

Published 9 Oct 2019 in math.AP

Abstract: We show that the limit infimum, as time $\,t\,$ goes to infinity, of any uniformly bounded in time $H{3/2+}\cap L1$ solution to the Intermediate Long Wave equation converge to zero locally in an increasing-in-time region of space of order $\,t/\log(t)$. Also, for solutions with a mild $L1$-norm growth in time is established that its limit infimum converge to zero, as time goes to infinity. This confirms the non existence of breathers and other solutions for the ILW model moving with a speed "slower" than a soliton. We also prove that in the far field linearly dominated region, the $L2$ norm of the solution also converges to zero as time approaches infinity. In addition, we deduced several scenarios for which the initial value problem associated to the generalized Benjamin-Ono and the generalized Intermediate Long Wave equations cannot possess time periodic solutions (breathers). Finally, as it was previously demonstrated in solutions of the KdV and BO equations, we establish the following propagation of regularity result : if the datum $u_0\in H{3/2+}(\mathbb R)\cap Hm((x_0,\infty))$, for some $\;x_0\in\mathbb R,\,m\in Z+,\,m\geq 2$, then the corresponding solution $u(t,\cdot)$ of the Intermediate Long Wave equation belongs to $Hm(\beta,\infty)$, for any $t>0$ and $\beta\in\mathbb R$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.