Greedy Convex Ensemble (1910.03742v2)
Abstract: We consider learning a convex combination of basis models, and present some new theoretical and empirical results that demonstrate the effectiveness of a greedy approach. Theoretically, we first consider whether we can use linear, instead of convex, combinations, and obtain generalization results similar to existing ones for learning from a convex hull. We obtain a negative result that even the linear hull of very simple basis functions can have unbounded capacity, and is thus prone to overfitting; on the other hand, convex hulls are still rich but have bounded capacities. Secondly, we obtain a generalization bound for a general class of Lipschitz loss functions. Empirically, we first discuss how a convex combination can be greedily learned with early stopping, and how a convex combination can be non-greedily learned when the number of basis models is known a priori. Our experiments suggest that the greedy scheme is competitive with or better than several baselines, including boosting and random forests. The greedy algorithm requires little effort in hyper-parameter tuning, and also seems able to adapt to the underlying complexity of the problem. Our code is available at https://github.com/tan1889/gce.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.