Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Percentile-Based Residuals for Model Assessment (1910.03709v1)

Published 8 Oct 2019 in stat.ME

Abstract: Residuals are a key component of diagnosing model fit. The usual practice is to compute standardized residuals using expected values and standard deviations of the observed data, then use these values to detect outliers and assess model fit. Approximate normality of these residuals is key for this process to have good properties, but in many modeling contexts, especially for complex, multi-level models, normality may not hold. In these cases outlier detection and model diagnostics aren't properly calibrated. Alternatively, as we demonstrate, residuals computed from the percentile location of a datum's value in its full predictive distribution lead to well calibrated evaluations of model fit. We generalize an approach described by Dunn and Smyth (1996) and evaluate properties mathematically, via case-studies and by simulation. In addition, we show that the standard residuals can be calibrated to mimic the percentile approach, but that this extra step is avoided by directly using percentile-based residuals. For both the percentile-based residuals and the calibrated standard residuals, the use of full predictive distributions with the appropriate location, spread and shape is necessary for valid assessments.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.