Papers
Topics
Authors
Recent
2000 character limit reached

AutoML using Metadata Language Embeddings (1910.03698v1)

Published 8 Oct 2019 in cs.LG, cs.CL, and stat.ML

Abstract: As a human choosing a supervised learning algorithm, it is natural to begin by reading a text description of the dataset and documentation for the algorithms you might use. We demonstrate that the same idea improves the performance of automated machine learning methods. We use language embeddings from modern NLP to improve state-of-the-art AutoML systems by augmenting their recommendations with vector embeddings of datasets and of algorithms. We use these embeddings in a neural architecture to learn the distance between best-performing pipelines. The resulting (meta-)AutoML framework improves on the performance of existing AutoML frameworks. Our zero-shot AutoML system using dataset metadata embeddings provides good solutions instantaneously, running in under one second of computation. Performance is competitive with AutoML systems OBOE, AutoSklearn, AlphaD3M, and TPOT when each framework is allocated a minute of computation. We make our data, models, and code publicly available.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.