Irregular Convolutional Auto-Encoder on Point Clouds (1910.02686v1)
Abstract: We proposed a novel graph convolutional neural network that could construct a coarse, sparse latent point cloud from a dense, raw point cloud. With a novel non-isotropic convolution operation defined on irregular geometries, the model then can reconstruct the original point cloud from this latent cloud with fine details. Furthermore, we proposed that it is even possible to perform particle simulation using the latent cloud encoded from some simulated particle cloud (e.g. fluids), to accelerate the particle simulation process. Our model has been tested on ShapeNetCore dataset for Auto-Encoding with a limited latent dimension and tested on a synthesis dataset for fluids simulation. We also compare the model with other state-of-the-art models, and several visualizations were done to intuitively understand the model.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.