Functional inequalities for two-level concentration (1910.01342v1)
Abstract: Probability measures satisfying a Poincar{\'e} inequality are known to enjoy a dimension free concentration inequality with exponential rate. A celebrated result of Bobkov and Ledoux shows that a Poincar{\'e} inequality automatically implies a modified logarithmic Sobolev inequality. As a consequence the Poincar{\'e} inequality ensures a stronger dimension free concentration property , known as two-level concentration. We show that a similar phenomenon occurs for the Latala-Oleszkiewicz inequalities, which were devised to uncover dimension free concentration with rate between exponential and Gaussian. Motivated by the search for counterexamples to related questions, we also develop analytic techniques to study functional inequalities for probability measures on the line with wild potentials.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.