Papers
Topics
Authors
Recent
Search
2000 character limit reached

Singular boundary behaviour and large solutions for fractional elliptic equations

Published 1 Oct 2019 in math.AP | (1910.00366v2)

Abstract: We show that the boundary behaviour of solutions to nonlocal fractional equations posed in bounded domains strongly differs from the one of solutions to elliptic problems modelled upon the Laplace-Poisson equation with zero boundary data. In this classical case it is known that, at least in a suitable weak sense, solutions of non-homogeneous Dirichlet problem are unique and tend to zero at the boundary. Limits of these solutions then produce solutions of some non-homogeneous Dirichlet problem as the interior data concentrate suitably to the boundary. Here, we show that such results are false for equations driven by a wide class of nonlocal fractional operators, extending previous findings for some models of the fractional Laplacian operator. Actually, different blow-up phenomena may occur at the boundary of the domain. We describe such explosive behaviours and obtain precise quantitative estimates depending on simple parameters of the nonlocal pperators. Our unifying technique is based on a careful study of the inverse operator in terms of the corresponding Green function.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.