Shellings and sheddings induced by collapses (1909.13850v2)
Abstract: We say that a pure simplicial complex ${\mathbf K}$ of dimension $d$ satisfies the removal-collapsibility condition if ${\mathbf K}$ is either empty or ${\mathbf K}$ becomes collapsible after removing $\tilde \beta_d ({\mathbf K}; {\mathbb Z}_2)$ facets, where $\tilde \beta_d ({\mathbf K}; {\mathbb Z}_2)$ denotes the $d$th reduced Betti number. In this paper, we show that if the link of each face of a pure simplicial complex ${\mathbf K}$ (including the link of the empty face which is the whole ${\mathbf K}$) satisfy the removal-collapsibility condition, then the second barycentric subdivision of ${\mathbf K}$ is vertex decomposable and in particular shellable. This is a higher dimensional generalization of a result of Hachimori, who proved that that if the link of each vertex of a pure 2-dimensional simplicial complex ${\mathbf K}$ is connected, and ${\mathbf K}$ becomes simplicially collapsible after removing $\tilde{\chi}({\mathbf K})$ facets, where $\tilde \chi ({\mathbf K})$ denotes the reduced Euler characteristic, then the second barycentric subdivision of ${\mathbf K}$ is shellable. For the proof, we introduce a new variant of decomposability of a simplicial complex, stronger than vertex decomposability, which we call star decomposability. This notion may be of independent interest.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.