Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

An Iterative Scientific Machine Learning Approach for Discovery of Theories Underlying Physical Phenomena (1909.13718v1)

Published 24 Sep 2019 in cs.LG and stat.ML

Abstract: Form a pure mathematical point of view, common functional forms representing different physical phenomena can be defined. For example, rates of chemical reactions, diffusion and heat transfer are all governed by exponential-type expressions. If machine learning is used for physical problems, inferred from domain knowledge, original features can be transformed in such a way that the end expressions are highly aligned and correlated with the underlying physics. This should significantly reduce the training effort in terms of iterations, architecture and the number of required data points. We extend this by approaching a problem from an agnostic position and propose a systematic and iterative methodology to discover theories underlying physical phenomena. At first, commonly observed functional forms of theoretical expressions are used to transform original features before conducting correlation analysis to output. Using random combinations of highly correlated expressions, training of Neural Networks (NN) are performed. By comparing the rates of convergence or mean error in training, expressions describing the underlying physical problems can be discovered, leading to extracting explicit analytic equations. This approach was used in three blind demonstrations for different physical phenomena.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.