Influence functions for Linear Discriminant Analysis: Sensitivity analysis and efficient influence diagnostics (1909.13479v1)
Abstract: Whilst influence functions for linear discriminant analysis (LDA) have been found for a single discriminant when dealing with two groups, until now these have not been derived in the setting of a general number of groups. In this paper we explore the relationship between Sliced Inverse Regression (SIR) and LDA, and exploit this relationship to develop influence functions for LDA from those already derived for SIR. These influence functions can be used to understand robustness properties of LDA and also to detect influential observations in practice. We illustrate the usefulness of these via their application to a real data set.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.