Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Can massless wormholes mimic a Schwarzschild black hole in the strong field lensing? (1909.13052v2)

Published 28 Sep 2019 in gr-qc

Abstract: Recent trend of research indicates that not only massive but also massless (asymptotic Newtonian mass zero) wormholes can reproduce post-merger initial ring-down gravitational waves characteristic of black hole horizon. In the massless case, it is the non-zero charge of other fields, equivalent to what we call here the "Wheelerian mass", that is responsible for mimicking ring-down quasi-normal modes. In this paper, we enquire whether the same Wheelerian mass can reproduce black hole observables also in an altogether different experiment, viz., the strong field lensing. We examine two classes of massless wormholes, one in the Einstein-Maxwell-Dilaton (EMD) theory and the other in the Einstein-Minimally-coupled-Scalar field (EMS) theory. The observables such as the radius of the shadow, image separation and magnification of the corresponding Wheelerian masses are compared with those of a black hole (idealized SgrA* chosen for illustration) assuming that the three types of lenses share the same minimum impact parameter and distance from the observer. It turns out that, while the massless EMS\ wormholes can closely mimic the black hole in terms of strong field lensing observables, the EMD wormholes show considerable differences due to the presence of dilatonic charge. The conclusion is that masslessless alone is enough to closely mimic Schwarzschild black hole strong lensing observables in the EMS theory but not in the other, where extra parameters also influence those observables. The motion of timelike particles is briefly discussed for completeness.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.