Papers
Topics
Authors
Recent
2000 character limit reached

Koszul duality for compactly generated derived categories of second kind (1909.11399v3)

Published 25 Sep 2019 in math.CT, math.AT, and math.RT

Abstract: For any dg algebra $A$ we construct a closed model category structure on dg $A$-modules such that the corresponding homotopy category is compactly generated by dg $A$-modules that are finitely generated and free over $A$ (disregarding the differential). We prove that this closed model category is Quillen equivalent to the category of comodules over a certain, possibly nonconilpotent dg coalgebra, a so-called extended bar construction of $A$. This generalises and complements certain aspects of dg Koszul duality for associative algebras.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.