Stability properties of Haezendonck-Goovaerts premium principles (1909.10735v2)
Abstract: We investigate a variety of stability properties of Haezendonck-Goovaerts premium principles on their natural domain, namely Orlicz spaces. We show that such principles always satisfy the Fatou property. This allows to establish a tractable dual representation without imposing any condition on the reference Orlicz function. In addition, we show that Haezendonck-Goovaerts principles satisfy the stronger Lebesgue property if and only if the reference Orlicz function fulfills the so-called $\Delta_2$ condition. We also discuss (semi)continuity properties with respect to $\Phi$-weak convergence of probability measures. In particular, we show that Haezendonck-Goovaerts principles, restricted to the corresponding Young class, are always lower semicontinuous with respect to the $\Phi$-weak convergence.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.