Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Object Segmentation using Pixel-wise Adversarial Loss (1909.10341v1)

Published 23 Sep 2019 in cs.CV and eess.IV

Abstract: Recent deep learning based approaches have shown remarkable success on object segmentation tasks. However, there is still room for further improvement. Inspired by generative adversarial networks, we present a generic end-to-end adversarial approach, which can be combined with a wide range of existing semantic segmentation networks to improve their segmentation performance. The key element of our method is to replace the commonly used binary adversarial loss with a high resolution pixel-wise loss. In addition, we train our generator employing stochastic weight averaging fashion, which further enhances the predicted output label maps leading to state-of-the-art results. We show, that this combination of pixel-wise adversarial training and weight averaging leads to significant and consistent gains in segmentation performance, compared to the baseline models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.