Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Output-sensitive Information flow analysis (1909.09567v5)

Published 20 Sep 2019 in cs.CR and cs.PL

Abstract: Constant-time programming is a countermeasure to prevent cache based attacks where programs should not perform memory accesses that depend on secrets. In some cases this policy can be safely relaxed if one can prove that the program does not leak more information than the public outputs of the computation. We propose a novel approach for verifying constant-time programming based on a new information flow property, called output-sensitive noninterference. Noninterference states that a public observer cannot learn anything about the private data. Since real systems need to intentionally declassify some information, this property is too strong in practice. In order to take into account public outputs we proceed as follows: instead of using complex explicit declassification policies, we partition variables in three sets: input, output and leakage variables. Then, we propose a typing system to statically check that leakage variables do not leak more information about the secret inputs than the public normal output. The novelty of our approach is that we track the dependence of leakage variables with respect not only to the initial values of input variables (as in classical approaches for noninterference), but taking also into account the final values of output variables. We adapted this approach to LLVM IR and we developed a prototype to verify LLVM implementations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.