Papers
Topics
Authors
Recent
Search
2000 character limit reached

Inference for a generalised stochastic block model with unknown number of blocks and non-conjugate edge models

Published 20 Sep 2019 in stat.ME | (1909.09421v2)

Abstract: The stochastic block model (SBM) is a popular model for capturing community structure and interaction within a network. Network data with non-Boolean edge weights is becoming commonplace; however, existing analysis methods convert such data to a binary representation to apply the SBM, leading to a loss of information. A generalisation of the SBM is considered, which allows edge weights to be modelled in their recorded state. An effective reversible jump Markov chain Monte Carlo sampler is proposed for estimating the parameters and the number of blocks for this generalised SBM. The methodology permits non-conjugate distributions for edge weights, which enable more flexible modelling than current methods as illustrated on synthetic data, a network of brain activity and an email communication network.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.