Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Variational Neural Machine Translation by Promoting Mutual Information (1909.09237v1)

Published 19 Sep 2019 in cs.CL

Abstract: Posterior collapse plagues VAEs for text, especially for conditional text generation with strong autoregressive decoders. In this work, we address this problem in variational neural machine translation by explicitly promoting mutual information between the latent variables and the data. Our model extends the conditional variational autoencoder (CVAE) with two new ingredients: first, we propose a modified evidence lower bound (ELBO) objective which explicitly promotes mutual information; second, we regularize the probabilities of the decoder by mixing an auxiliary factorized distribution which is directly predicted by the latent variables. We present empirical results on the Transformer architecture and show the proposed model effectively addressed posterior collapse: latent variables are no longer ignored in the presence of powerful decoder. As a result, the proposed model yields improved translation quality while demonstrating superior performance in terms of data efficiency and robustness.

Citations (7)

Summary

We haven't generated a summary for this paper yet.