Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Using Latent Codes for Class Imbalance Problem in Unsupervised Domain Adaptation (1909.08962v1)

Published 17 Sep 2019 in cs.LG and stat.ML

Abstract: We address the problem of severe class imbalance in unsupervised domain adaptation, when the class spaces in source and target domains diverge considerably. Till recently, domain adaptation methods assumed the aligned class spaces, such that reducing distribution divergence makes the transfer between domains easier. Such an alignment assumption is invalidated in real world scenarios where some source classes are often under-represented or simply absent in the target domain. We revise the current approaches to class imbalance and propose a new one that uses latent codes in the adversarial domain adaptation framework. We show how the latent codes can be used to disentangle the silent structure of the target domain and to identify under-represented classes. We show how to learn the latent code reconstruction jointly with the domain invariant representation and use them to accurately estimate the target labels.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.