Papers
Topics
Authors
Recent
2000 character limit reached

Worst-case Complexity Bounds of Directional Direct-search Methods for Multiobjective Optimization (1909.08099v3)

Published 17 Sep 2019 in math.OC

Abstract: Direct Multisearch is a well-established class of algorithms, suited for multiobjective derivative-free optimization. In this work, we analyze the worst-case complexity of this class of methods in its most general formulation for unconstrained optimization. Considering nonconvex smooth functions, we show that to drive a given criticality measure below a specific positive threshold, Direct Multisearch takes at most a number of iterations proportional to the square of the inverse of the threshold, raised to the number of components of the objective function. This number is also proportional to the size of the set of linked sequences between the first unsuccessful iteration and the iteration immediately before the one where the criticality condition is satisfied. We then focus on a particular instance of Direct Multisearch, which considers a more strict criterion for accepting new nondominated points. In this case, we can establish a better worst-case complexity bound, simply proportional to the square of the inverse of the threshold, for driving the same criticality measure below the considered threshold.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.