Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
475 tokens/sec
Kimi K2 via Groq Premium
259 tokens/sec
2000 character limit reached

A new scalable algorithm for computational optimal control under uncertainty (1909.07960v1)

Published 17 Sep 2019 in math.NA and cs.NA

Abstract: We address the design and synthesis of optimal control strategies for high-dimensional stochastic dynamical systems. Such systems may be deterministic nonlinear systems evolving from random initial states, or systems driven by random parameters or processes. The objective is to provide a validated new computational capability for optimal control which will be achieved more efficiently than current state-of-the-art methods. The new framework utilizes direct single or multi-shooting discretization, and is based on efficient vectorized gradient computation with adaptable memory management. The algorithm is demonstrated to be scalable to high-dimensional nonlinear control systems with random initial condition and unknown parameters.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube