Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Kronecker-Based Sparse Compressive Sensing Matrix for Millimeter Wave Beam Alignment

Published 16 Sep 2019 in eess.SP | (1909.06985v1)

Abstract: Millimeter wave beam alignment (BA) is a challenging problem especially for large number of antennas. Compressed sensing (CS) tools have been exploited due to the sparse nature of such channels. This paper presents a novel deterministic CS approach for BA. Our proposed sensing matrix which has a Kronecker-based structure is sparse, which means it is computationally efficient. We show that our proposed sensing matrix satisfies the restricted isometry property (RIP) condition, which guarantees the reconstruction of the sparse vector. Our approach outperforms existing random beamforming techniques in practical low signal to noise ratio (SNR) scenarios.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.