Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Generation of jets and Fujita's jet ampleness conjecture on toric varieties (1909.06949v2)

Published 16 Sep 2019 in math.AG and math.CO

Abstract: Jet ampleness of line bundles generalizes very ampleness by requiring the existence of enough global sections to separate not just points and tangent vectors, but also their higher order analogues called jets. We give sharp bounds guaranteeing that a line bundle on a projective toric variety is $k$-jet ample in terms of its intersection numbers with the invariant curves, in terms of the lattice lengths of the edges of its polytope, in terms of the higher concavity of its piecewise linear function and in terms of its Seshadri constant. For example, the tensor power $k+n-2$ of an ample line bundle on a projective toric variety of dimension $n \geq 2$ always generates all $k$-jets, but might not generate all $(k+1)$-jets. As an application, we prove the $k$-jet generalizations of Fujita's conjectures on toric varieties with arbitrary singularities.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.