Papers
Topics
Authors
Recent
2000 character limit reached

Wield: Systematic Reinforcement Learning With Progressive Randomization

Published 15 Sep 2019 in cs.LG and stat.ML | (1909.06844v1)

Abstract: Reinforcement learning frameworks have introduced abstractions to implement and execute algorithms at scale. They assume standardized simulator interfaces but are not concerned with identifying suitable task representations. We present Wield, a first-of-its kind system to facilitate task design for practical reinforcement learning. Through software primitives, Wield enables practitioners to decouple system-interface and deployment-specific configuration from state and action design. To guide experimentation, Wield further introduces a novel task design protocol and classification scheme centred around staged randomization to incrementally evaluate model capabilities.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.