Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Adaptive Scheduling for Multi-Task Learning (1909.06434v1)

Published 13 Sep 2019 in cs.LG, cs.CL, and stat.ML

Abstract: To train neural machine translation models simultaneously on multiple tasks (languages), it is common to sample each task uniformly or in proportion to dataset sizes. As these methods offer little control over performance trade-offs, we explore different task scheduling approaches. We first consider existing non-adaptive techniques, then move on to adaptive schedules that over-sample tasks with poorer results compared to their respective baseline. As explicit schedules can be inefficient, especially if one task is highly over-sampled, we also consider implicit schedules, learning to scale learning rates or gradients of individual tasks instead. These techniques allow training multilingual models that perform better for low-resource language pairs (tasks with small amount of data), while minimizing negative effects on high-resource tasks.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.