Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Convergence of Newton-MR under Inexact Hessian Information (1909.06224v2)

Published 13 Sep 2019 in math.OC

Abstract: Recently, there has been a surge of interest in designing variants of the classical Newton-CG in which the Hessian of a (strongly) convex function is replaced by suitable approximations. This is mainly motivated by large-scale finite-sum minimization problems that arise in many machine learning applications. Going beyond convexity, inexact Hessian information has also been recently considered in the context of algorithms such as trust-region or (adaptive) cubic regularization for general non-convex problems. Here, we do that for Newton-MR, which extends the application range of the classical Newton-CG beyond convexity to invex problems. Unlike the convergence analysis of Newton-CG, which relies on spectrum preserving Hessian approximations in the sense of L\"{o}wner partial order, our work here draws from matrix perturbation theory to estimate the distance between the subspaces underlying the exact and approximate Hessian matrices. Numerical experiments demonstrate a great degree of resilience to such Hessian approximations, amounting to a highly efficient algorithm in large-scale problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.