Convergence of Newton-MR under Inexact Hessian Information (1909.06224v2)
Abstract: Recently, there has been a surge of interest in designing variants of the classical Newton-CG in which the Hessian of a (strongly) convex function is replaced by suitable approximations. This is mainly motivated by large-scale finite-sum minimization problems that arise in many machine learning applications. Going beyond convexity, inexact Hessian information has also been recently considered in the context of algorithms such as trust-region or (adaptive) cubic regularization for general non-convex problems. Here, we do that for Newton-MR, which extends the application range of the classical Newton-CG beyond convexity to invex problems. Unlike the convergence analysis of Newton-CG, which relies on spectrum preserving Hessian approximations in the sense of L\"{o}wner partial order, our work here draws from matrix perturbation theory to estimate the distance between the subspaces underlying the exact and approximate Hessian matrices. Numerical experiments demonstrate a great degree of resilience to such Hessian approximations, amounting to a highly efficient algorithm in large-scale problems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.