Papers
Topics
Authors
Recent
Search
2000 character limit reached

Modules over trusses vs modules over rings: direct sums and free modules

Published 12 Sep 2019 in math.RA | (1909.05807v1)

Abstract: Categorical constructions on heaps and modules over trusses are considered and contrasted with the corresponding constructions on groups and rings. These include explicit description of free heaps and free Abelian heaps, coproducts or direct sums of Abelian heaps and modules over trusses, and description and analysis of free modules over trusses. It is shown that the direct sum of two non-empty Abelian heaps is always infinite and isomorphic to the heap associated to the direct sums of the group retracts of both heaps and $\mathbb{Z}$. Direct sum is used to extend a given truss to a ring-type truss or a unital truss (or both). Free modules are constructed as direct sums of a truss. It is shown that only free rank-one modules are free as modules over the associated truss. On the other hand, if a (finitely generated) module over a truss associated to a ring is free, then so is the corresponding quotient-by-absorbers module over this ring.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.