Papers
Topics
Authors
Recent
Search
2000 character limit reached

Prediction of Overall Survival of Brain Tumor Patients

Published 10 Sep 2019 in cs.LG, cs.CV, eess.IV, and stat.ML | (1909.04596v1)

Abstract: Automated brain tumor segmentation plays an important role in the diagnosis and prognosis of the patient. In addition, features from the tumorous brain help in predicting patients overall survival. The main focus of this paper is to segment tumor from BRATS 2018 benchmark dataset and use age, shape and volumetric features to predict overall survival of patients. The random forest classifier achieves overall survival accuracy of 59% on the test dataset and 67% on the dataset with resection status as gross total resection. The proposed approach uses fewer features but achieves better accuracy than state of the art methods.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.