Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Interleaved Batch Matrix Solvers for CUDA (1909.04539v2)

Published 10 Sep 2019 in cs.DC and physics.comp-ph

Abstract: In this paper we present a new methodology for data accesses when solving batches of Tridiagonal and Pentadiagonal matrices that all share the same LHS matrix. By only storing one copy of this matrix there is a significant reduction in storage overheads and the authors show that there is also a performance increase in terms of compute time. These two results combined lead to an overall more efficient implementation over the current state of the art algorithms cuThomasBatch and cuPentBatch, allowing for a greater number of systems to be solved on a single GPU.

Citations (1)

Summary

We haven't generated a summary for this paper yet.