The EFT Likelihood for Large-Scale Structure (1909.04022v2)
Abstract: We derive, using functional methods and the bias expansion, the conditional likelihood for observing a specific tracer field given an underlying matter field. This likelihood is necessary for Bayesian-inference methods. If we neglect all stochastic terms apart from the ones appearing in the auto two-point function of tracers, we recover the result of Schmidt et al., 2018. We then rigorously derive the corrections to this result, such as those coming from a non-Gaussian stochasticity (which include the stochastic corrections to the tracer bispectrum) and higher-derivative terms. We discuss how these corrections can affect current applications of Bayesian inference. We comment on possible extensions to our result, with a particular eye towards primordial non-Gaussianity. This work puts on solid theoretical grounds the EFT-based approach to Bayesian forward modeling.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.