Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The EFT Likelihood for Large-Scale Structure (1909.04022v2)

Published 9 Sep 2019 in astro-ph.CO and hep-th

Abstract: We derive, using functional methods and the bias expansion, the conditional likelihood for observing a specific tracer field given an underlying matter field. This likelihood is necessary for Bayesian-inference methods. If we neglect all stochastic terms apart from the ones appearing in the auto two-point function of tracers, we recover the result of Schmidt et al., 2018. We then rigorously derive the corrections to this result, such as those coming from a non-Gaussian stochasticity (which include the stochastic corrections to the tracer bispectrum) and higher-derivative terms. We discuss how these corrections can affect current applications of Bayesian inference. We comment on possible extensions to our result, with a particular eye towards primordial non-Gaussianity. This work puts on solid theoretical grounds the EFT-based approach to Bayesian forward modeling.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.