Data Sanity Check for Deep Learning Systems via Learnt Assertions (1909.03835v3)
Abstract: Reliability is a critical consideration to DL-based systems. But the statistical nature of DL makes it quite vulnerable to invalid inputs, i.e., those cases that are not considered in the training phase of a DL model. This paper proposes to perform data sanity check to identify invalid inputs, so as to enhance the reliability of DL-based systems. We design and implement a tool to detect behavior deviation of a DL model when processing an input case. This tool extracts the data flow footprints and conducts an assertion-based validation mechanism. The assertions are built automatically, which are specifically-tailored for DL model data flow analysis. Our experiments conducted with real-world scenarios demonstrate that such an assertion-based data sanity check mechanism is effective in identifying invalid input cases.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.