Papers
Topics
Authors
Recent
Search
2000 character limit reached

Explicit Constructions of Two-Dimensional Reed-Solomon Codes in High Insertion and Deletion Noise Regime

Published 8 Sep 2019 in cs.IT and math.IT | (1909.03426v2)

Abstract: Insertion and deletion (insdel for short) errors are synchronization errors in communication systems caused by the loss of positional information in the message. Reed-Solomon codes have gained a lot of interest due to its encoding simplicity, well structuredness and list-decoding capability in the classical setting. This interest also translates to the insdel metric setting, as the Guruswami-Sudan decoding algorithm can be utilized to provide a deletion correcting algorithm in the insdel metric. Nevertheless, there have been few studies on the insdel error-correcting capability of Reed-Solomon codes. Our main contributions in this paper are explicit constructions of two families of 2-dimensional Reed-Solomon codes with insdel error-correcting capabilities asymptotically reaching those provided by the Singleton bound. The first construction gives a family of Reed-Solomon codes with insdel error-correcting capability asymptotic to its length. The second construction provides a family of Reed Solomon codes with an exact insdel error-correcting capability up to its length. Both our constructions improve the previously known construction of 2-dimensional Reed-Solomon codes whose insdel error-correcting capability is only logarithmic on the code length.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.