2000 character limit reached
On the connections between algorithmic regularization and penalization for convex losses (1909.03371v1)
Published 8 Sep 2019 in math.OC and stat.ML
Abstract: In this work we establish the equivalence of algorithmic regularization and explicit convex penalization for generic convex losses. We introduce a geometric condition for the optimization path of a convex function, and show that if such a condition is satisfied, the optimization path of an iterative algorithm on the unregularized optimization problem can be represented as the solution path of a corresponding penalized problem.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.