Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast mmwave Beam Alignment via Correlated Bandit Learning (1909.03313v1)

Published 7 Sep 2019 in eess.SP and cs.AI

Abstract: Beam alignment (BA) is to ensure the transmitter and receiver beams are accurately aligned to establish a reliable communication link in millimeter-wave (mmwave) systems. Existing BA methods search the entire beam space to identify the optimal transmit-receive beam pair, which incurs significant BA latency on the order of seconds in the worst case. In this paper, we develop a learning algorithm to reduce BA latency, namely Hierarchical Beam Alignment (HBA) algorithm. We first formulate the BA problem as a stochastic multi-armed bandit problem with the objective to maximize the cumulative received signal strength within a certain period. The proposed algorithm takes advantage of the correlation structure among beams such that the information from nearby beams is extracted to identify the optimal beam, instead of searching the entire beam space. Furthermore, the prior knowledge on the channel fluctuation is incorporated in the proposed algorithm to further accelerate the BA process. Theoretical analysis indicates that the proposed algorithm is asymptotically optimal. Extensive simulation results demonstrate that the proposed algorithm can identify the optimal beam with a high probability and reduce the BA latency from hundreds of milliseconds to a few milliseconds in the multipath channel, as compared to the existing BA method in IEEE 802.11ad.

Citations (114)

Summary

We haven't generated a summary for this paper yet.