Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Multivariate Bandit Algorithm with Path Planning (1909.02705v2)

Published 6 Sep 2019 in cs.LG and stat.ML

Abstract: In this paper, we solve the arms exponential exploding issue in multivariate Multi-Armed Bandit (Multivariate-MAB) problem when the arm dimension hierarchy is considered. We propose a framework called path planning (TS-PP) which utilizes decision graph/trees to model arm reward success rate with m-way dimension interaction, and adopts Thompson sampling (TS) for heuristic search of arm selection. Naturally, it is quite straightforward to combat the curse of dimensionality using a serial processes that operates sequentially by focusing on one dimension per each process. For our best acknowledge, we are the first to solve Multivariate-MAB problem using graph path planning strategy and deploying alike Monte-Carlo tree search ideas. Our proposed method utilizing tree models has advantages comparing with traditional models such as general linear regression. Simulation studies validate our claim by achieving faster convergence speed, better efficient optimal arm allocation and lower cumulative regret.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.