Papers
Topics
Authors
Recent
Search
2000 character limit reached

Classification with Costly Features as a Sequential Decision-Making Problem

Published 5 Sep 2019 in cs.LG, cs.AI, and stat.ML | (1909.02564v1)

Abstract: This work focuses on a specific classification problem, where the information about a sample is not readily available, but has to be acquired for a cost, and there is a per-sample budget. Inspired by real-world use-cases, we analyze average and hard variations of a directly specified budget. We postulate the problem in its explicit formulation and then convert it into an equivalent MDP, that can be solved with deep reinforcement learning. Also, we evaluate a real-world inspired setting with sparse training dataset with missing features. The presented method performs robustly well in all settings across several distinct datasets, outperforming other prior-art algorithms. The method is flexible, as showcased with all mentioned modifications and can be improved with any domain independent advancement in RL.

Citations (30)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.