Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Towards Flops-constrained Face Recognition (1909.00632v1)

Published 2 Sep 2019 in cs.CV

Abstract: Large scale face recognition is challenging especially when the computational budget is limited. Given a \textit{flops} upper bound, the key is to find the optimal neural network architecture and optimization method. In this article, we briefly introduce the solutions of team 'trojans' for the ICCV19 - Lightweight Face Recognition Challenge~\cite{lfr}. The challenge requires each submission to be one single model with the computational budget no higher than 30 GFlops. We introduce a searched network architecture Efficient PolyFace' based on the Flops constraint, a novel loss functionArcNegFace', a novel frame aggregation method QAN++', together with a bag of useful tricks in our implementation (augmentations, regular face, label smoothing, anchor finetuning, etc.). Our basic model,Efficient PolyFace', takes 28.25 Gflops for the deepglint-large' image-based track, and thePolyFace+QAN++' solution takes 24.12 Gflops for the `iQiyi-large' video-based track. These two solutions achieve 94.198\% @ 1e-8 and 72.981\% @ 1e-4 in the two tracks respectively, which are the state-of-the-art results.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.