Papers
Topics
Authors
Recent
2000 character limit reached

Minimum $L^q$-distance estimators for non-normalized parametric models (1909.00002v2)

Published 30 Aug 2019 in math.ST, stat.ME, and stat.TH

Abstract: We propose and investigate a new estimation method for the parameters of models consisting of smooth density functions on the positive half axis. The procedure is based on a recently introduced characterization result for the respective probability distributions, and is to be classified as a minimum distance estimator, incorporating as a distance function the $Lq$-norm. Throughout, we deal rigorously with issues of existence and measurability of these implicitly defined estimators. Moreover, we provide consistency results in a common asymptotic setting, and compare our new method with classical estimators for the exponential-, the Rayleigh-, and the Burr Type XII distribution in Monte Carlo simulation studies. We also assess the performance of different estimators for non-normalized models in the context of an exponential-polynomial family.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.