Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

High-temperature spin dynamics in the Heisenberg chain: Magnon propagation and emerging KPZ-scaling in the zero-magnetization limit (1908.11432v2)

Published 29 Aug 2019 in cond-mat.stat-mech and cond-mat.str-el

Abstract: The large-scale dynamics of quantum integrable systems is often dominated by ballistic modes due to the existence of stable quasi-particles. We here consider as an archetypical example for such a system the spin-$\frac{1}{2}$ XXX Heisenberg chain that features magnons and their bound states. An interesting question, which we here investigate numerically, arises with respect to the fate of ballistic modes at finite temperatures in the limit of zero magnetization $m{=}0$. At a finite magnetization density $m$, the spin autocorrelation function $\Pi(x,t)$ (at high temperatures) typically exhibits a trimodal behavior with left- and right-moving quasi-particle modes and a broad center peak with slower dynamics. The broadening of the fastest propagating modes exhibits a sub-diffusive $t{1/3}$ scaling at large magnetization densities, $m {\rightarrow} \frac{1}{2}$, familiar from non-interacting models; it crosses over into a diffusive scaling $t{1/2}$ upon decreasing the magnetization to smaller values. The behavior of the center peak appears to exhibit a crossover from transient super-diffusion to ballistic relaxation at long times. In the limit $m{\to}0$, the weight carried by the propagating peaks tends to zero; the residual dynamics is carried only by the central peak; it is sub-ballistic and characterized by a dynamical exponent $z$ close to the value $\frac{3}{2}$ familiar from Kardar-Parisi-Zhang (KPZ) scaling. We confirm, employing elaborate finite-time extrapolations, that the spatial scaling of the correlator $\Pi$ is in excellent agreement with KPZ-type behavior and analyze the corresponding corrections.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.