Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Transfer Learn: Reinforcement Learning-Based Selection for Adaptive Transfer Learning (1908.11406v2)

Published 29 Aug 2019 in cs.LG and cs.AI

Abstract: We propose a novel adaptive transfer learning framework, learning to transfer learn (L2TL), to improve performance on a target dataset by careful extraction of the related information from a source dataset. Our framework considers cooperative optimization of shared weights between models for source and target tasks, and adjusts the constituent loss weights adaptively. The adaptation of the weights is based on a reinforcement learning (RL) selection policy, guided with a performance metric on the target validation set. We demonstrate that L2TL outperforms fine-tuning baselines and other adaptive transfer learning methods on eight datasets. In the regimes of small-scale target datasets and significant label mismatch between source and target datasets, L2TL shows particularly large benefits.

Citations (5)

Summary

We haven't generated a summary for this paper yet.