Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Relevance Transfer Learning (1711.03361v1)

Published 9 Nov 2017 in cs.LG and stat.ML

Abstract: Transfer learning aims to faciliate learning tasks in a label-scarce target domain by leveraging knowledge from a related source domain with plenty of labeled data. Often times we may have multiple domains with little or no labeled data as targets waiting to be solved. Most existing efforts tackle target domains separately by modeling the `source-target' pairs without exploring the relatedness between them, which would cause loss of crucial information, thus failing to achieve optimal capability of knowledge transfer. In this paper, we propose a novel and effective approach called Multi-Relevance Transfer Learning (MRTL) for this purpose, which can simultaneously transfer different knowledge from the source and exploits the shared common latent factors between target domains. Specifically, we formulate the problem as an optimization task based on a collective nonnegative matrix tri-factorization framework. The proposed approach achieves both source-target transfer and target-target leveraging by sharing multiple decomposed latent subspaces. Further, an alternative minimization learning algorithm is developed with convergence guarantee. Empirical study validates the performance and effectiveness of MRTL compared to the state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.