Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Accurate Knowledge Transfer via Target-awareness Representation Disentanglement (2010.08532v2)

Published 16 Oct 2020 in cs.LG and cs.AI

Abstract: Fine-tuning deep neural networks pre-trained on large scale datasets is one of the most practical transfer learning paradigm given limited quantity of training samples. To obtain better generalization, using the starting point as the reference (SPAR), either through weights or features, has been successfully applied to transfer learning as a regularizer. However, due to the domain discrepancy between the source and target task, there exists obvious risk of negative transfer in a straightforward manner of knowledge preserving. In this paper, we propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED), where the relevant knowledge with respect to the target task is disentangled from the original source model and used as a regularizer during fine-tuning the target model. Specifically, we design two alternative methods, maximizing the Maximum Mean Discrepancy (Max-MMD) and minimizing the mutual information (Min-MI), for the representation disentanglement. Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average. TRED also outperforms related state-of-the-art transfer learning regularizers such as L2-SP, AT, DELTA, and BSS.

Summary

We haven't generated a summary for this paper yet.