Papers
Topics
Authors
Recent
2000 character limit reached

A Zero Attention Model for Personalized Product Search

Published 29 Aug 2019 in cs.IR | (1908.11322v1)

Abstract: Product search is one of the most popular methods for people to discover and purchase products on e-commerce websites. Because personal preferences often have an important influence on the purchase decision of each customer, it is intuitive that personalization should be beneficial for product search engines. While synthetic experiments from previous studies show that purchase histories are useful for identifying the individual intent of each product search session, the effect of personalization on product search in practice, however, remains mostly unknown. In this paper, we formulate the problem of personalized product search and conduct large-scale experiments with search logs sampled from a commercial e-commerce search engine. Results from our preliminary analysis show that the potential of personalization depends on query characteristics, interactions between queries, and user purchase histories. Based on these observations, we propose a Zero Attention Model for product search that automatically determines when and how to personalize a user-query pair via a novel attention mechanism. Empirical results on commercial product search logs show that the proposed model not only significantly outperforms state-of-the-art personalized product retrieval models, but also provides important information on the potential of personalization in each product search session.

Citations (58)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.