Papers
Topics
Authors
Recent
Search
2000 character limit reached

Relaxation of the Cahn-Hilliard equation with singular single-well potential and degenerate mobility

Published 29 Aug 2019 in math.AP | (1908.11294v4)

Abstract: The degenerate Cahn-Hilliard equation is a standard model to describe living tissues. It takes into account cell populations undergoing short-range attraction and long-range repulsion effects. In this framework, we consider the usual Cahn-Hilliard equation with a singular single-well potential and degenerate mobility. These degeneracy and singularity induce numerous difficulties, in particular for its numerical simulation. To overcome these issues, we propose a relaxation system formed of two second order equations which can be solved with standard packages. This system is endowed with an energy and an entropy structure compatible with the limiting equation. Here, we study the theoretical properties of this system; global existence and convergence of the relaxed system to the degenerate Cahn-Hilliard equation. We also study the long-time asymptotics which interest relies on the numerous possible steady states with given mass.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.