Poincaré Maps for Multiscale Physics Discovery and Nonlinear Floquet Theory (1908.10958v2)
Abstract: Poincar\'e maps are an integral aspect to our understanding and analysis of nonlinear dynamical systems. Despite this fact, the construction of these maps remains elusive and is primarily left to simple motivating examples. In this manuscript we propose a method of data-driven discovery of Poincar\'e maps based upon sparse regression techniques, specifically the sparse identification of nonlinear dynamics (SINDy) algorithm. This work can be used to determine the dynamics on and near invariant manifolds of a given dynamical system, as well as provide long-time forecasting of the coarse-grained dynamics of multiscale systems. Moreover, the method provides a mathematical formalism for determining nonlinear Floquet theory for the stability of nonlinear periodic orbits. The methods are applied to a range of examples including both ordinary and partial differential equations that exhibit periodic, quasi-periodic, and chaotic behavior.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.