Papers
Topics
Authors
Recent
2000 character limit reached

Bloom filter variants for multiple sets: a comparative assessment

Published 28 Aug 2019 in cs.DS | (1908.10644v1)

Abstract: In this paper we compare two probabilistic data structures for association queries derived from the well-known Bloom filter: the shifting Bloom filter (ShBF), and the spatial Bloom filter (SBF). With respect to the original data structure, both variants add the ability to store multiple subsets in the same filter, using different strategies. We analyse the performance of the two data structures with respect to false positive probability, and the inter-set error probability (the probability for an element in the set of being recognised as belonging to the wrong subset). As part of our analysis, we extended the functionality of the shifting Bloom filter, optimising the filter for any non-trivial number of subsets. We propose a new generalised ShBF definition with applications outside of our specific domain, and present new probability formulas. Results of the comparison show that the ShBF provides better space efficiency, but at a significantly higher computational cost than the SBF.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.