Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model Selection With Graphical Neighbour Information (1908.10243v1)

Published 27 Aug 2019 in stat.ML, cs.LG, and cs.SI

Abstract: Accurate model selection is a fundamental requirement for statistical analysis. In many real-world applications of graphical modelling, correct model structure identification is the ultimate objective. Standard model validation procedures such as information theoretic scores and cross validation have demonstrated poor performance in the high dimensional setting. Specialised methods such as EBIC, StARS and RIC have been developed for the explicit purpose of high-dimensional Gaussian graphical model selection. We present a novel model score criterion, Graphical Neighbour Information. This method demonstrates oracle performance in high-dimensional model selection, outperforming the current state-of-the-art in our simulations. The Graphical Neighbour Information criterion has the additional advantage of efficient, closed-form computability, sparing the costly inference of multiple models on data subsamples. We provide a theoretical analysis of the method and benchmark simulations versus the current state of the art.

Summary

We haven't generated a summary for this paper yet.