Papers
Topics
Authors
Recent
2000 character limit reached

Uniqueness and non-uniqueness of steady states of aggregation-diffusion equations (1908.09782v1)

Published 26 Aug 2019 in math.AP

Abstract: We consider a nonlocal aggregation equation with degenerate diffusion, which describes the mean-field limit of interacting particles driven by nonlocal interactions and localized repulsion. When the interaction potential is attractive, it is previously known that all steady states must be radially decreasing up to a translation, but uniqueness (for a given mass) within the radial class was open, except for some special interaction potentials. For general attractive potentials, we show that the uniqueness/non-uniqueness criteria are determined by the power of the degenerate diffusion, with the critical power being $m = 2$. In the case $m \ge 2$, we show that for any attractive potential the steady state is unique for a fixed mass. In the case $1 < m < 2$, we construct examples of smooth attractive potentials, such that there are infinitely many radially decreasing steady states of the same mass. For the uniqueness proof, we develop a novel interpolation curve between two radially decreasing densities, and the key step is to show that the interaction energy is convex along this curve for any attractive interaction potential, which is of independent interest.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.