Papers
Topics
Authors
Recent
2000 character limit reached

Modules over posets: commutative and homological algebra (1908.09750v2)

Published 26 Aug 2019 in math.AC, math.AG, math.AT, math.CO, and math.RT

Abstract: The commutative and homological algebra of modules over posets is developed, as closely parallel as possible to the algebra of finitely generated modules over noetherian commutative rings, in the direction of finite presentations, primary decompositions, and resolutions. Interpreting this finiteness in the language of derived categories of subanalytically constructible sheaves proves two conjectures due to Kashiwara and Schapira concerning sheaves with microsupport in a given cone. The motivating case is persistent homology of arbitrary filtered topological spaces, especially the case of multiple real parameters. The algebraic theory yields computationally feasible, topologically interpretable data structures, in terms of birth and death of homology classes, for persistent homology indexed by arbitrary posets. The exposition focuses on the nature and ramifications of a suitable finiteness condition to replace the noetherian hypothesis. The tameness condition introduced for this purpose captures finiteness for variation in families of vector spaces indexed by posets in a way that is characterized equivalently by distinct topological, algebraic, combinatorial, and homological manifestations. Tameness serves both the theoretical and computational purposes: it guarantees finite primary decompositions, as well as various finite presentations and resolutions all related by a syzygy theorem, and the data structures thus produced are computable in addition to being interpretable. The tameness condition and its resulting theory are new even in the finitely generated discrete setting, where being tame is materially weaker than being noetherian.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube