Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Don't ignore Dropout in Fully Convolutional Networks (1908.09162v1)

Published 24 Aug 2019 in cs.CV

Abstract: Data for Image segmentation models can be costly to obtain due to the precision required by human annotators. We run a series of experiments showing the effect of different kinds of Dropout training on the DeepLabv3+ Image segmentation model when trained using a small dataset. We find that when appropriate forms of Dropout are applied in the right place in the model architecture that non-insignificant improvement in Mean Intersection over Union (mIoU) score can be observed. In our best case, we find that applying Dropout scheduling in conjunction with SpatialDropout improves baseline mIoU from 0.49 to 0.59. This result shows that even where a model architecture makes extensive use of Batch Normalization, Dropout can still be an effective way of improving performance in low data situations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.