Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

MEx: Multi-modal Exercises Dataset for Human Activity Recognition (1908.08992v1)

Published 13 Aug 2019 in cs.CV, cs.AI, cs.LG, eess.SP, and stat.ML

Abstract: MEx: Multi-modal Exercises Dataset is a multi-sensor, multi-modal dataset, implemented to benchmark Human Activity Recognition(HAR) and Multi-modal Fusion algorithms. Collection of this dataset was inspired by the need for recognising and evaluating quality of exercise performance to support patients with Musculoskeletal Disorders(MSD). We select 7 exercises regularly recommended for MSD patients by physiotherapists and collected data with four sensors a pressure mat, a depth camera and two accelerometers. The dataset contains three data modalities; numerical time-series data, video data and pressure sensor data posing interesting research challenges when reasoning for HAR and Exercise Quality Assessment. This paper presents our evaluation of the dataset on number of standard classification algorithms for the HAR task by comparing different feature representation algorithms for each sensor. These results set a reference performance for each individual sensor that expose their strengths and weaknesses for the future tasks. In addition we visualise pressure mat data to explore the potential of the sensor to capture exercise performance quality. With the recent advancement in multi-modal fusion, we also believe MEx is a suitable dataset to benchmark not only HAR algorithms, but also fusion algorithms of heterogeneous data types in multiple application domains.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.